01-220 Installation and centering of intermediate flange

Data			
Vertical runout of intermediate flange		max. 0.10	
Tightening torques		Nm	(kpm)
Fastening screws for intermediate flange		50	(5)
	Initial torque	40	(4)
Necked-down screw for driven plate and flywheel	Angle of rotation torque	90–100 ⁰	
Special tool			
Dial gauge holder (2 each required)	363 589 02 21 0		9 02 21 00
Socket 27 mm, 1/2" square for turning the engine	OCL 643	001 589 65 09 00	
Self-made tool			
Threaded bolt	d bolt refer to		fig. item 3

Note			

A new intermediate flange must be centered.

For reasons of standardization with engine 110 in model 126, intermediate flanges with two additional bores (arrows) have been installed.

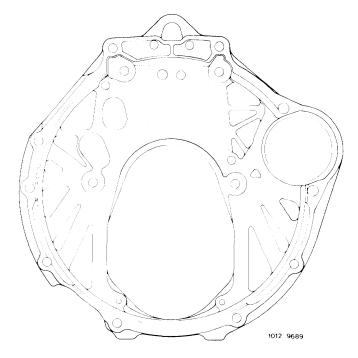
The bores are intended for transmissions with centering of set pins.

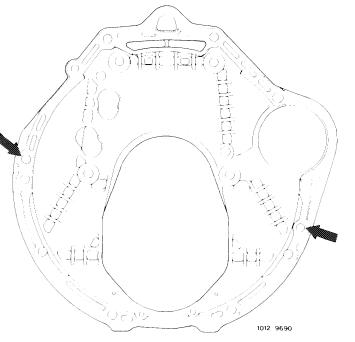
It is possible to mount these intermediate flanges on the previous engines as well.

Previous version

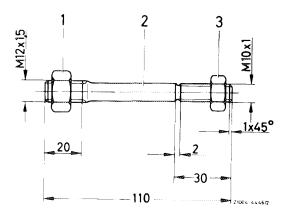
Start of series: February 1980

Model	Engine	Engine er manual trans- mission	automa- tic trans-	
123.020	115.938	104 711	024 877	141 564
123.020	115.939	012 168	000 637	141 304
123.000 123.023	115.054	124 270	060 400	178 623
123.043	115.954 134 370 069 490 23.043	017 978		
123.083				006 415

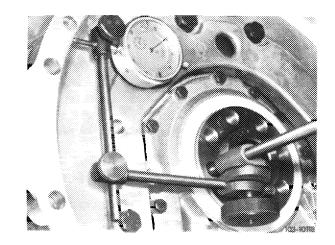

Present version


Spare parts

Designation	Previous part No.	Present part No.
Intermediate flange	115 011 15 45	615 011 02 45



- 1 Insert intermediate flange into set pins of cylinder crankcase.
- 2 Slightly tighten the four fastening screws.



3 Screw threaded bolt (self-made) into crankshaft and counterlock with hex, nut.

- 4 Attach dial gauge holder with dial gauge to threaded bolt.
- 5 Position feeler pin against OD of round center.

Shown on engine 116

6 Turn crankshaft with tool combination and measure vertical runout. Vertical runout should not exceed max. 0.10.

Note: When turning crankshaft, make sure that feeler pin of dial gauge is not getting stuck.

R 100/6498

- 7 Correct vertical runout by means of light blows against intermediate flange.
- 8 Tighten fastening screws.

Note: If the vertical runout is higher than 0.10 mm, remove intermediate flange.

- 9 Drill both fitted bores in intermediate flange to $12.1\ \text{mm}$
- 10 Repeat item 1-8.